- **11.5.** Найдите наименьшее натуральное число n такое, что оба числа $n^3 n$ и $(n+1)^3 (n+1)$ делятся на 2025.
- 11.6. Точка H основание высоты, опущенной из вершины A треугольника ABC. На прямых AB и AC отмечены точки X и Y соответственно так, что описанные окружности треугольников BXH и CYH касаются друг друга, обозначим эти окружности через ω_B и ω_C соответственно. Касательные к окружностям ω_B и ω_C , проходящие через точки X и Y соответственно, пересекаются в точке Z.

Докажите, что точка Z равноудалена от точек A и H.

11.7. Положительные вещественные числа $a_1 > a_2 > \ldots > a_n$ с суммой s таковы, что уравнение $nx^2 - sx + 1 = 0$ имеет положительный корень a_{n+1} , меньший a_n .

Докажите, что найдётся натуральное число r, не превосходящее n, для которого выполнено неравенство $a_r a_{r+1} \geqslant \frac{1}{r}$.

11.8. В некоторые клетки таблицы 2025×2025 поставили по одному крестику. Множество, состоящее из 2025 клеток, назовём $\it nadeйным$, если любые две из них находятся в разных строках и разных столбцах. Известно, что каждое ладейное множество содержит хотя бы $\it k$ крестиков.

Найдите наименьшее k, при котором крестики заведомо возможно окрасить в два цвета так, что любое ладейное множество будет содержать крестики обоих цветов.