ВАРИАНТ 1

ЗАДАНИЕ 1 АЗИМУТ ЗВЕЗДЫ

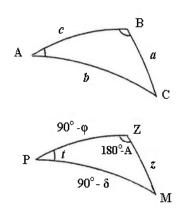
Звезда α -Волопаса склонение которой $\delta = +19^{\circ}36'$ наблюдалась в Могилеве в некоторый момент времени. Ее часовой угол в этот момент составлял $t = 48^{\circ}31'$.

- A). Вычислить зенитное расстояние и азимут α -Волопаса в момент наблюдения. Географическую широту Могилева принять равной $\varphi = 53^{\circ}42'$.
- Б). Найти разницу зенитных расстояний α-Волопаса при ее разноименных кульминациях, если верхняя кульминация наблюдалась на юге от зенита.
- В). Определить звездное время в Могилеве, географическая долгота которого $\lambda = 30^{\circ}21'$ в восемь часов вечера 28 апреля.

Решение (20 баллов)

A).

Судя по экваториальным координатам, звезда находится в западной половине небесной сферы. Изобразим параллактический треугольник для нашей звезды. Для преобразования экваториальных координат в горизонтальные применим формулы сферического треугольника:



$$\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A,\tag{1}$$

$$\sin a \cdot \cos B = \cos b \cdot \sin c - \sin b \cdot \cos c \cdot \cos A,\tag{2}$$

$$\sin a \cdot \sin B = \sin b \cdot \sin A,\tag{3}$$

где a, b, c – стороны треугольника, а $\angle A, \angle B, \angle C$ – противолежащие его углы (и стороны и углы выражаются в градусах).

Положим a=z, $\angle A=t$, $b=90^{\circ}-\delta$, $\angle B=180^{\circ}-A$ и $c=90^{\circ}-\varphi$ и подставим их в вышеприведенные формулы. Получим:

$$\cos z = \cos(90^{\circ} - \delta) \cdot \cos(90^{\circ} + \varphi) +$$

$$+\sin(90^{\circ} - \delta) \cdot \sin(90^{\circ} - \varphi) \cdot \cos t$$
, (4)

 $\sin z \cdot \cos(180^{\circ} - A) = \cos(90^{\circ} - \delta) \cdot \sin(90^{\circ} - \delta) -$

$$-\sin(90^{\circ} - \delta) \cdot \cos(90^{\circ} - \varphi) \cdot \cos t, \qquad (5)$$

$$\sin z \cdot \sin(180^{\circ} - A) = \sin(90^{\circ} - \delta) \cdot \sin t, \tag{6}$$

Теоретический тур. Вариант 1. Бланк для жюри

которые после упрощения принимают вид:

$$\cos z = \sin \varphi \cdot \sin \delta + \cos \varphi \cdot \cos \delta \cdot \cos t \tag{7}$$

$$\sin z \cdot \cos A = -\sin \delta \cdot \cos \varphi + \cos \delta \cdot \sin \varphi \cdot \cos t \tag{8}$$

$$\sin z \cdot \sin A = \cos \varphi \cdot \sin t \tag{9}$$

Теперь найдем зенитное расстояние из (7):

 $\cos z = \sin 53^{\circ}42' \cdot \sin 19^{\circ}36' + \cos 53^{\circ}42' \cdot \cos 19^{\circ}36' \cdot \cos 48^{\circ}31' =$

$$=0,806\cdot0,335+0,592\cdot0,942\cdot0,662=0,27+0,369=0,639$$
. Откуда $z=50^{\circ}17'$.(**5 баллов**)

Азимут найдем из формулы (9):

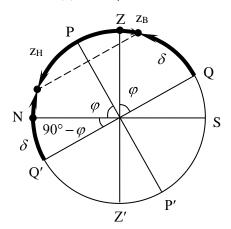
 $sin A = cos 19^{\circ}36' \cdot sin 48^{\circ}31' / sin 50^{\circ}17' = 0,942 \cdot 0,749 / 0,769 = 0,918.$

Тогда $A = 66^{\circ}34'$ или $4^{\circ}26^{\circ}$. (5 баллов)

Примечание: Формула (8) (ее называют формулой пяти элементов) для решения данной задачи не понадобилась.

Б).

Изобразим сечение небесной сферы в плоскости небесного меридиана и обозначим зенитное расстояние некоторого светила в верхней (z_B) и нижней (z_H) кульминации. Также обозначим географическую широту места наблюдения φ и склонение светила δ в обеих кульминациях.



Тогда из рисунка следует:

$$z_B = \varphi - \delta$$
, $z_H = 90^\circ - [\delta - (90^\circ - \varphi)] = 180^\circ - \delta - \varphi$ $z_R - z_H = (\varphi - \delta) - (180^\circ - \delta - \varphi) = 2\varphi - 180^\circ = -72^\circ 36'$ (3 балла)

B).

Местное среднее солнечное время в указанный момент равно $T_m = 8^h + 12^h = 20^h$. Это значит, что после средней полночи прошло 20^h . Этот промежуток времени выразим в единицах звездного времени. Это будет $K \cdot T_m$, где K – переводной коэффициент среднего времени в звездное. Он равен 1,002738. Если теперь

определить звездное время в среднюю полночь на данном меридиане S, то в момент T_m звездное время будет $S = S + K \cdot T_m$.

В астрономических ежегодниках дается звездное время S_o для каждой полночи по среднему солнечному времени (средней полночи) на меридиане Гринвича. Зная S_o , можно вычислить S на любом другом меридиане, если известна его долгота λ .

$$S = S_0 - \frac{\lambda^h}{24^h} \cdot 3^m 56^s, 55 \tag{1}$$

Долгота λ отсчитывается положительной к востоку от Гринвича. Тогда формула для перевода местного среднего солнечного времени в звездное имеет вид:

$$s = S_0 - \frac{\lambda^h}{24^h} \cdot 3^m 56^s, 55 + K \cdot T_m \tag{2}$$

Для приближенных расчетов (с точностью до 5 минут) формулу (2) можно упростить. Для этого необходимо помнить, что звездное время в Гринвиче в среднюю полночь с 20 на 21 марта равно $12^{\rm h}$. Тогда в полночь любого другого дня звездное время будет равно $3^{\rm m}56^{\rm s},55$, умноженное на число дней N, прошедших с 20 марта до данного дня, плюс $12^{\rm h}$.

$$S_0 = N \cdot 3^m 56^s, 55 + 12^h \tag{3}$$

Вторым членом в формуле (2) можно пренебречь (максимальное его значение может составлять $-3^{\rm m}56^{\rm s},55$). Также коэффициент K можно положить равным единице (от этой операции максимальная внесенная ошибка может быть около $+4^{\rm m}$). В итоге получим:

$$s \approx S_0 + T_m \approx N \cdot 3^m 56^s ,55 + 12^h + T_m$$
 (4)

По этой формуле и рассчитаем звездное время в Могилеве. N = 39, т.к. 28 апреля является 39-м днем после 20 марта. Тогда $s \approx 39 \cdot 3^m 56^s$, $55 + 12^h + 20^h \approx 9^h 57^m 37^s$ (7 баллов)

Ответы: $z = 50^{\circ}17'$; $A = 4^{\circ}26^{\circ}$; $z_B - z_H = -72^{\circ}36'$; $s \approx 9^h57^m37^s$.

ЗАДАНИЕ 2 ЗВЕЗДА

Во время летнего солнцестояния в полночь, звезда, находящаяся в противостоянии с Солнцем, находится в зените. Ее высота в течение суток в данном месте изменяется от 0 до 90 градусов. Эта звезда находится на главной последовательности. Эффективная температура ее поверхности $T = 11000 \, \mathrm{K}$.

- А). Пренебрегая рефракцией, уравнением времени и аберрацией, определите эклиптические координаты звезды.
 - Б). Оцените ее радиус и массу (в единицах Солнца).
- В). Оцените ее абсолютную звездную величину и полное время нахождения на главной последовательности (в годах).

Теоретический тур. Вариант 1. Бланк для жюри

- Г). Определить, на каком расстоянии эта звезда имеет такую же видимую звездную величину, что и Солнце на расстоянии 30 пк?
- Д). Во сколько раз радиус этой звезды больше радиуса соседней звезды, если максимумы в их спектрах излучения отличаются на 20%, а светимости в 20 раз? Звезды считать абсолютно черными телами.
- Е). Наблюдатели каких географических широт можно будет наблюдать на небе эту звезду в верхней кульминации?

Примечание: 1). Наблюдения проводятся в Южном полушарии Земли.

2). Температура Солнца $T_C = 5780~K$, а его абсолютная звездная величина 4,8.

Решение (20 баллов)

A).

Во время летнего солнцестояния круг склонения и круг эклиптической широты Солнца будут совпадать. Поэтому прямые восхождения звезды и Солнца отличаются на 12^h . Высота звезды в верхней кульминации: $h_B=90^\circ$, а в нижней $h_H=0^\circ$. Тогда широта места наблюдения: $\phi=-(h_B+h_H)/2=-45^\circ$. Склонение звезды в зените равно географической высоте места наблюдения: $\delta=-45^\circ$. Эклиптическая широта звезды: $\beta=\delta+\epsilon=-21^\circ34'$. Прямое восхождение звезды: $\alpha=\alpha_C+12^h=18^h$. Эклиптическая долгота звезды: $\lambda=270^\circ$. (6 баллов)

Б).

Светимость звезды и Солнца:

$$L=4\pi R^2 \sigma T^4$$
, $L_C=4\pi R_C^2 \sigma T_C^4$.

Зависимость радиус-светимость для звезды и Солнца:

$$L=C_RR^{5.2}$$
, $L_C=C_RR_C^{5.2}$.

Из этого находим $R=2,235R_{C}$.

Зависимость масса-светимость для звезды и Солнца:

$$L=C_m m^{3.9}$$
, $L_C=C_m m_C^{3.9}$ \Rightarrow $m=2,922m_C$. (4 балла)

B).

Светимость звезды будет равна

$$L=(R/R_C)^2 \cdot (T/T_C)^4 L_C=2.235^2 \cdot (11000/5780)^4 L_C=65.48L_C$$

Абсолютная звездная величина звезды:

$$M=2.51gL-M_C=2.51g35.27-4.8=-0.26$$

Полное время нахождения звезды на главной последовательности будет:

$$\tau \sim 10^{10} \text{ (m/m}_{\text{C}}) \cdot (L_{\text{C}}/L) = 4,6 \cdot 10^{8}$$
 лет. (2 балла)

Γ).

Видимая звездная величина Солнца на расстоянии 30 пк:

$$m_{\rm C} = M_{\rm C} - 5 + 51g30 = 4,8 - 5 + 51g30 = 7,185.$$

Теоретический тур. Вариант 1. Бланк для жюри

Видимая звездная величина звезды на расстоянии r:

$$m=M-5+5$$
lg r \Rightarrow r=10 $\frac{(m-M+5)}{5}$ = 308,32 пк. (2 балла)

Д).

Светимость звезды определяется формулой:

 $L=4\pi R^2\sigma T^4$

Из закона Вина: $T = b/\lambda_{MAX}$. Тогда:

$$L_2/L_1 = (R_2/R_1)^2 \cdot (T_2/T_1)^4 = (R_2/R_1)^2 \cdot (\lambda_{MAX1}/\lambda_{MAX2})^4$$
.

а). Если максимум в спектре соседней звезды имеет большую длину волны чем в нашей то: λ_{MAX2} =1,2 λ_{MAX1} , L_2 =20 L_1 .

Тогда:
$$R_2/R_1 = (L_2/L_1)^{0.5} \cdot (\lambda_{MAX2}/\lambda_{MAX1})^2 = 6,4$$
 (2 балла)

б). Если максимум в спектре нашей звезды имеет большую длину волны чем у соседней то: λ_{MAX1} =1,2 λ_{MAX2} , L_1 =20 L_2 .

Тогда:
$$R_2/R_1 = (L_2/L_1)^{0.5} \cdot (\lambda_{MAX2}/\lambda_{MAX1})^2 = 3,1$$
 (2 балла)

E).

Эту звезду можно будет наблюдаться на географических широтах $-90 \le \phi < 45^\circ$. (2 балла)

Ответы: β = -21°34'; λ =270°; R=2,235 R_C ; m=2,922 m_C ; M = -0,26; t=4,6·10⁸ лет; r=308,32 пк; R_2/R_1 =6,4; R_2/R_1 =3,1; -90 ° \leq ϕ < 45°.

ЗАДАНИЕ З ГРАВИТАЦИОННЫЙ МАНЕВР

Автоматическая межпланетная станция (AMC) земного происхождения входит в сферу действия Юпитера. Гелиоцентрическая скорость AMC в этот момент равна 7,43 км/с и сонаправлена с вектором орбитальной скорости Юпитера.

- а) Вычислите большую полуось a орбиты AMC в сфере действия Юпитера.
- б) Получите зависимость эксцентриситета e орбиты AMC в сфере действия Юпитера от значения прицельного параметра b, выраженного в единицах радиуса ρ сферы действия Юпитера, если эксцентриситет определяется выражением

$$e = \left(1 + 2\frac{\varepsilon l^2}{G^2 M_{10}^2}\right)^{0.5},$$

где ε — удельная полная механическая энергия AMC в сфере действия Юпитера, l — удельный момент импульса AMC относительно Юпитера. Теоретический тур. Вариант 1. Бланк для жюри

- в) Определите угол ϕ между векторами юпитероцентрической скорости AMC при входе и выходе из сферы действия как функцию от параметра b, выраженного в единицах радиуса ρ .
- г) Вычислите максимально возможное увеличение модуля гелиоцентрической скорости $\Delta \upsilon_{ACM}$ межпланетной станции при таком гравитационном маневре.

Примечание: орбиту Юпитера считайте круговой с радиусом $a_{IO} = 5,2$ а.е., его массу и радиус примите равными $M_{IO} = 318 M_{\oplus}$ и $R_{IO} = 11 R_{\oplus}$ соответственно; изменение гелиоцентрической скорости АМС при изменении прицельного параметра считайте пренебрежимо малым.

Решение (20 баллов)

а) Радиус сферы действия определяется выражением $\rho = a_{\rm IO} \left(\frac{M_{\rm IO}}{M_{\rm C}} \right)^{0.4} = 0,322 \ {\rm a.e.}$

Входная скорость АМС в сферу действия Юпитера (скорость относительно Юпитера) равна $\upsilon_{_{BX}}=\upsilon_{_{\hbox{\scriptsize IO}}}-\upsilon_{_{\hbox{\scriptsize AMC}}}=5,67$ км/с , где

$$v_{\rm HO} = \sqrt{\frac{GM_{\rm C}}{a_{\rm HO}}} = 13.1 \text{ km/c}.$$

Удельная полная механическая энергия АМС в сфере действия Юпитера:

$$\varepsilon = \frac{v_{\text{вх}}^2}{2} - \frac{GM_{\text{IO}}}{\rho} = -\frac{GM_{\text{IO}}}{2a} = 13,444 \text{ МДж/кг}.$$

Большая полуось орбиты АМС в сфере действия Юпитера равна $a = -\frac{GM_{10}}{2\epsilon} = -0,0315$ а.е. и определяется только входной скоростью и радиусом сферы действия (не зависит от прицельного параметра). (3 балла)

б) Удельный момент импульса АМС (момент импульса АМС, отнесенный к ее массе) равен

$$l = v_{\rm BX} \rho \sin \alpha = v_{\rm BX} b$$

$$e(b) = \left(1 + \frac{2\varepsilon}{G^2 M_{1O}^2} v_{\text{вх}}^2 b^2\right)^{0.5}$$
 или $e(\tilde{b}) = \left(1 + 125\tilde{b}^2\right)^{0.5}$, где $\tilde{b} = b/\rho$. (3 балла)

в) Из рисунка получаем $\varphi = 2\alpha + \beta$, где $\beta = 2\theta - 180^{\circ}$, следовательно $\varphi = 2\left(\alpha + \theta - 90^{\circ}\right)$. Также $\alpha(\tilde{b}) = \arcsin\left(\frac{b}{\rho}\right) = \arcsin(\tilde{b})$. Из уравнения кривых второго

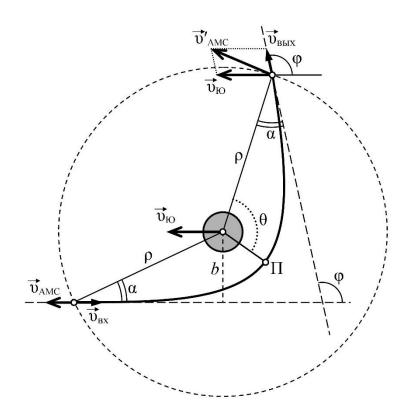
порядка в полярных координатах имеем: $r = \frac{a\left(1 - e^2\right)}{1 + e \cdot \cos \theta}$. При $r = \rho$ получим

$$\rho = \frac{a - a \Big(e(\tilde{b}) \Big)^2}{1 + e(\tilde{b}) \cdot \cos \Big(\theta(\tilde{b}) \Big)}, \text{ откуда найдем}$$

$$\theta(\tilde{b}) = \arccos\left(\frac{a\left(1 - \left(e\left(\tilde{b}\right)\right)^{2}\right) - \rho}{\rho e\left(\tilde{b}\right)}\right).$$

В итоге зависимость угла ϕ от \tilde{b} приобретает вид:

$$\varphi(\tilde{b}) = 2 \left(\arcsin(\tilde{b}) + \arccos\left(\frac{a - a\left(e(\tilde{b})\right)^2 - \rho}{\rho e(\tilde{b})}\right) - 90^{\circ} \right).$$
 (8 баллов)



г) Увеличение гелиоцентрической скорости АМС при гравитационном маневре в сфере действия Юпитера обусловлено геометрическим сложением векторов скорости Юпитера и скорости АМС при выходе из сферы действия Юпитера: $\vec{\upsilon}_{AMC}' = \vec{\upsilon}_{IO} + \vec{\upsilon}_{Bbix}$. По закону сохранения механической энергии выходная скорость АМС из сферы действия Юпитера будет равна входной скорости. Модуль вектора $\vec{\upsilon}_{AMC}'$ получим из теоремы косинусов:

$$\upsilon_{AMC}' = \sqrt{\upsilon_{IO}^2 + \upsilon_{BMX}^2 - 2\upsilon_{IO}\upsilon_{BMX}\cos\phi},$$

где угол ϕ является функцией прицельного параметра b. Максимальное увеличение скорости АМС будет в том случае, когда угол ϕ будет стремиться к 180° . Это возможно при очень малом прицельном параметре. Минимальный прицельный параметр $b_{\text{мин}}$ можно определить из условия равенства перицентрического расстояния АМС радиусу Юпитера, из которого определяется эксцентриситет e' такой орбиты:

$$R_{\text{HO}} = a(1-e') \rightarrow e' = 1 - R_{\text{HO}}/a = 1,0148$$
.

Из зависимости $e(\tilde{b})$ получим $\tilde{b}_{\text{мин}}=0{,}0155$ и $\phi(\tilde{b}_{\text{мин}})=164{,}2^{\circ}$. Тогда $\Delta \upsilon_{\text{AMC}}=\upsilon_{\text{AMC}}'-\upsilon_{\text{AMC}}=11{,}12$ км/с . (**6 баллов)**

ЗАДАНИЕ 4 ЛЯМБДА-CDM

Современной космологической моделью нестационарной Вселенной, удовлетворяющей уравнениям общей теории относительности, является модель A-CDM. Еще в 1998 году по результатам изучения сверхновых звезд в далеких галактиках было установлено ускоренное расширение Вселенной, которое рамках модели Λ CDM объясняет ненулевое космологической постоянной Λ , по последним данным $1,0905 \cdot 10^{-52} \,\mathrm{m}^{-2}$. В теоретических моделях, описывающих однородную и изотропную расширяющуюся Вселенную, постоянная Хаббла Н изменяется с однако в каждый конкретный момент течением времени, принимается одинаковой в каждой точке Вселенной и при этом связана с безразмерным масштабным фактором а соотношением

$$H(t) = \frac{\dot{a}(t)}{a(t)}$$
,

где \dot{a} означает быстроту изменения масштабного фактора с течением времени. С другой стороны масштабный фактор a связан с наблюдаемым космологическим красным смещением z света в момент его излучения $t_{\text{изл}}$ соотношением:

$$z = \frac{a(t_0)}{a(t_{\text{MMI}})} - 1,$$

где $a(t_0) = 1$ – масштабный фактор в настоящее время t_0 .

Эволюция во времени масштабного фактора a в рамках модели Λ CDM с учетом возможной положительной, отрицательной или нулевой кривизны k пространства описывается уравнением Фридмана, которое имеет в системе единиц СИ следующий вид:

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8\pi G}{3} \rho_{\mathrm{M}} - \frac{kc^{2}}{\left(a(t)\right)^{2}} + \frac{\Lambda c^{2}}{3},$$

где ρ_{M} – плотность материи Вселенной (в том числе и темной материи).

- а) В предположении плоской Вселенной вычислите параметр плотности материи $\Omega_{\rm M} = \rho_{\rm M}/\rho_{\rm kp}$, приняв значение постоянной Хаббла, полученное по измерениям барионных акустических колебаний, равным 68,4 км/(Мпк·с). Здесь $\rho_{\rm kp}$ критическая плотность Вселенной.
- б) Считая плотность обычной барионной материи равной $\rho_{\text{Б}} = 6,167\cdot 10^{-9}~\text{M}_{\odot}/\text{пк}^3$ и пренебрегая вкладом излучения определите, какая доля плотности приходится на темную материю.
- в) Рассматривая в первом приближении зависимость масштабного фактора от времени в виде $a(t_{\text{изл}}) = a(t_0) + \dot{a}(t_0) \cdot (t_{\text{изл}} t_0)$, получите зависимость $t_{\text{изл}}(z)$, приняв в качестве параметров время t_0 и хаббловское время t_{H} .
- г) На основании предыдущих пунктов определите время, прошедшее с момента рождения Вселенной до момента излучения света одним из самых удаленных квазаров, находящимся в галактике UHZ1 ($\alpha = 00^{\rm q}14^{\rm m}16^{\rm c}$; $\delta = -30^{\circ}$ 22′ 40,2″; z = 10,1), а также скорость его удаления от наблюдателя в единицах скорости света.

Решение (20 баллов)

а) Для плоской Вселенной кривизна k=0. Тогда уравнение Фридмана примет вид:

$$1 = \frac{8\pi G}{3H^2} \rho_{\rm M} + \frac{\Lambda c^2}{3H^2}$$
 или $1 = \Omega_{\rm M} + \frac{\Lambda c^2}{3H^2}$,

откуда $\Omega_{\rm M} = 0.334$. (4 балла)

б) Плотность материи содержит плотность обычной барионной материи, плотность излучения и плотность темной материи: $\rho_{M} = \rho_{E} + \rho_{\text{изл}} + \rho_{TM}$. Пренебрегая плотностью излучения, получим

$$\frac{
ho_{\mathrm{TM}}}{
ho_{\mathrm{M}}} = 1 - \frac{8\pi G}{3H^2}
ho_{\mathrm{B}} \Omega_{\mathrm{M}}^{-1} = 0,858.$$
 (4 балла)

в) Из зависимости $a(t_{\text{изл}}) = a(t_0) + \dot{a}(t_0) \cdot (t_{\text{изл}} - t_0)$ получим

откуда находим

$$t_{\text{\tiny H3J}} = t_0 - \frac{z}{1+z} t_H$$
 . (8 баллов)

г) С учетом возраста Вселенной $t_0 = 13,8\cdot 10^9$ лет, используя зависимость $t_{\text{изл}}(z)$, получим $t_{\text{изл}} = 7,49\cdot 10^8$ лет с момента рождения Вселенной. Скорость удаления галактики UHZ1 с квазаром от наблюдателя в единицах скорости света равна

$$\beta = \frac{\upsilon}{c} = \frac{(1+z)^2 - 1}{(1+z)^2 + 1} = 0,984.$$
 (4 балла)

ЗАДАНИЕ 5 СВЕРХНОВАЯ ТИПА IA

Сверхновые типа Іа выделяются среди других типов сверхновых тем, что имеют универсальных вид спектра излучения и величину светимости. Благодаря этому по ним можно довольно точно определять расстояния до галактик, в которых они наблюдаются. Механизм их возникновения следующий. Имеется двойная звезда, состоящая из белого карлика и массивной звезды. В процессе своей эволюции, массивная звезда начинает увеличиваться в размерах и превращается в красного гиганта. При этом вещество из нее перетекает на белый карлик. Как известно, белые карлики, имеющую массу $M > M_{\rm Чан}$ (здесь $M_{\rm Чан} \approx 1,4 M_{\odot}$ — предел Чандрасекара) являются неустойчивыми и коллапсируют с образованием нейтронной звезды. Это событие сопровождается взрывом сверхновой.

Рассмотрим простейшую модель данного сценария. Пусть масса белого карлика $M_{\rm EK}$, а масса нормальной звезды $M_{\rm 3}$. Они движутся по круговой орбите, расстояние между компонентами равно D. Будем пренебрегать собственным вращением компонентов двойной системы и считать их точечными массами.

- А). Выразить период обращения двойной звезды Т через $M_{\rm EK}$, $M_{\rm 3}$, D и гравитационную постоянную G.
- Б). Выразить кинетическую энергию двойной звезды E_{κ} и полный момент импульса L через те же величины. Какую из полученных величин можно считать сохраняющейся в процессе аккреции (перетекания) вещества?
- В). Пусть начальные значения параметров двойной звезды следующие: $(M_{\rm BK})_0=1.2~M_\odot$, $(M_3)_0=8,0M_\odot$, $D_0=1.1\times10^{11}~\rm M$. Перетекание вещества звезды на белый карлик начинается, когда равнодействующая сил, действующих на некоторый малый элемент звезды не направлена внутрь звезды. Определить минимальный радиус звезды-красного гиганта $r_{\rm мин}$, при котором начнется перетекание ее вещества. Примечание: полученное для $r_{\rm мин}$ уравнение можно решить приближенно: графически. Гравитационную

постоянную принять равной $G=6.67\times 10^{-11}\frac{{\rm Hm}^2}{{\rm K}\Gamma^2}$, массу Солнца $M_{\odot}=1.99\times 10^{30}{\rm K}\Gamma$.

- Г). Выразить период обращения двойной звезды через массы компонент $M_{\rm BK}$, M_3 и момент ипмульса L . Пусть в процессе аккреции масса белого карлика увеличилась на малую величину ΔM . Выразить соответствующее изменение периода ΔT через массы компонент, период T и ΔM . Для данных пункт В). расстояние между компонентами будет увеличиваться, или уменьшаться с течением времени? Примечание: для малых х можно воспользоваться формулой $(1+x)^n \approx 1+nx$, где n-1 любое целое число.
- Д). Используя значения параметров двойной звезды из пункта В)., найти период обращения двойной звезды в начальный момент времени, а также в момент времени, непосредственно предшествующий взрыву сверхновой (в годах). Примечание: изменение массы белого карлика при этом можно считать малым.

Решение (20 баллов)

А). На основании обобщенного третьего закона Кеплера запишем:

$$T = \frac{2\pi D^{3/2}}{\sqrt{G(M_{\rm DK} + M_3)}}\tag{1}$$

(2 балла)

Б). Звезды движутся по окружностям вокруг общего центра масс. Их радиусы:

$$r_{\rm BK} = \frac{M_3}{M_{\rm BK} + M_3} D; \tag{2}$$

$$r_3 = \frac{M_{\rm BK}}{M_{\rm BK} + M_3} D. \tag{3}$$

Используя (1), (2) и (3), кинетическую энергию можно записать как сумму кинетических энергий обеих звезд:

$$E_{\rm K} = \frac{4\pi^2 M_{\rm BK} r_{\rm BK}^2}{2T^2} + \frac{4\pi^2 M_{\rm BK} r_{\rm BK}^2}{2T^2} = \frac{GM_{\rm BK} M_3}{2D}.$$
 (4)

Так как мы пренебрегаем собственным вращением звезд, то момент импульса будет равен сумме моментов импульсов компонент:

$$L = M_{\rm BK} \frac{4\pi^2 r_{\rm BK}}{T} r_{\rm BK} + M_3 \frac{4\pi^2 r_3}{T} r_3 = \frac{\sqrt{DG} M_{\rm BK} M_3}{\sqrt{M_{\rm BK} + M_3}}.$$
 (5)

Потенциальная энергия взаимодействия компонент не обязана сохраняться при аккреции, поэтому не будет сохраняться и кинетическая. Если мы предположим, что аккреция происходит симметричным образом относительно компонент, то момент импульса двойной звезды будет сохраняться.

(4 балла)

В). Для того, чтобы ближайший к белому карлику элемент красного гиганта начал свободно перетекать на белый карлик, необходимо равновесие трех сил, направленных вдоль одной прямой: гравитационного притяжения белого карлика, гравитационного притяжения красного гиганта и центробежной силы. Таким образом, получим:

$$\frac{GM_{\rm BK}}{(D-r_{\rm MHH})^2} + \frac{4\pi^2}{T^2} (r_{\rm MHH} - r_3) = \frac{GM_3}{r_{\rm MHH}^2},\tag{6}$$

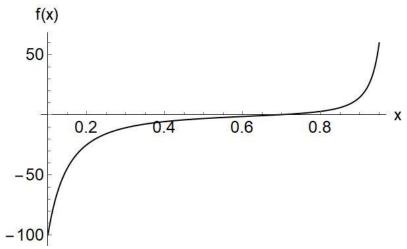
Подставим период Т и радиус орбиты красного гиганта (1), (3):

$$\frac{M_{\rm BK}}{(D-r_{\rm MUH})^2} - \frac{M_{\rm BK}}{D^2} + \frac{(M_{\rm BK}+M_3)}{D^3} r_{\rm MUH} = \frac{M_3}{r_{\rm MUH}^2},\tag{7}$$

Для решения полученного уравнения (7) введем безразмерные величины $x = r_{\text{мин}}/D$, $q = \frac{M_{\text{БК}}}{M_3} = 0.15$. Получим уравнение:

$$f(x) = x(q+1) - q - \frac{1}{x^2} + \frac{q}{(1-x)^2} = 0.$$
 (8)

(8) сводится к уравнению 5-й степени, поэтому его корни не могут быть выражены через элементарные функции от q. График f(x) представ/лен на Рис.:



Из графика находим: $x \approx 0.7$, т. е. $r_{\text{мин}} \approx 0.7 D = 7.7 \times 10^{10} \text{ м.}$ (6 баллов)

 Γ). Исключая D из соотношений (1) и (5), получим:

$$T = \frac{2\pi L^3 (M_{\rm BK} + M_3)}{G^2 M_{\rm BK}^3 M_3^3}.$$
 (9)

Сумма масс в процессе аккреции сохраняется, поэтому изменение периода есть:

$$\Delta T = \frac{2\pi L^3 (M_{\rm BK} + M_3)}{G^2 (M_{\rm BK} + \Delta M)^3 (M_3 - \Delta M)^3} - \frac{2\pi L^3 (M_{\rm BK} + M_3)}{G^2 M_{\rm BK}^3 M_3^3} =$$

$$= \frac{2\pi L^3 (M_{\rm BK} + M_3)}{G^2 M_{\rm BK}^3 M_3^3} \left(\frac{1}{(1 + \Delta M / M_{\rm BK})^3 (1 - \Delta M / M_3)^3} - 1 \right).$$

Используя формулу из примечания, получим:

$$\Delta T \approx \frac{3T(M_{\rm BK} - M_3)}{M_{\rm BK} M_3} \Delta M. \tag{10}$$

Следовательно, период обращения будет уменьшаться. Но так как зависимость между периодом и расстоянием монотонная, то расстояние D будет тоже уменьшаться.

(4 балла)

Д). Для начального момента времени по формуле (1) находим: $T_0 = 0.21$ года.

В нашем случае $\Delta M=0.2~M_{\odot}$. По формуле (10) получаем $\Delta T=-0.09$ года. Таким образом, перед взрывом сверхновой T=0.12 года. (4 балла)