Четвёртый этап республиканской олимпиад	ы по учебному предмет	у «Биология»
	2021/202	2 учебный гол

Место для баллов:	Код:	

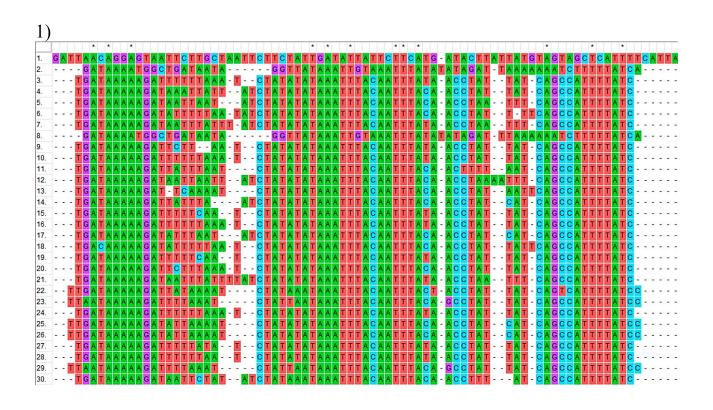
КАБИНЕТ № 3 МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

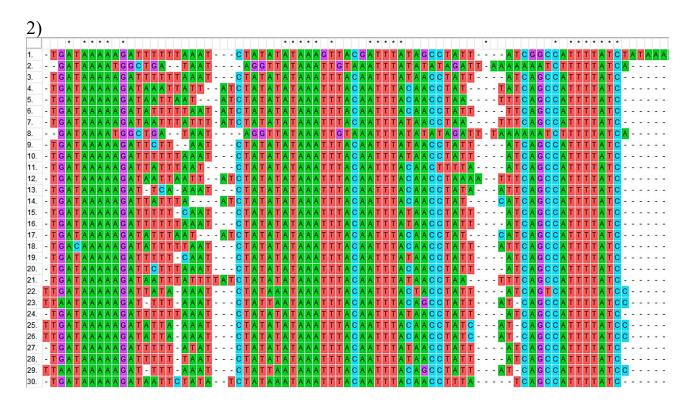
(30 баллов)

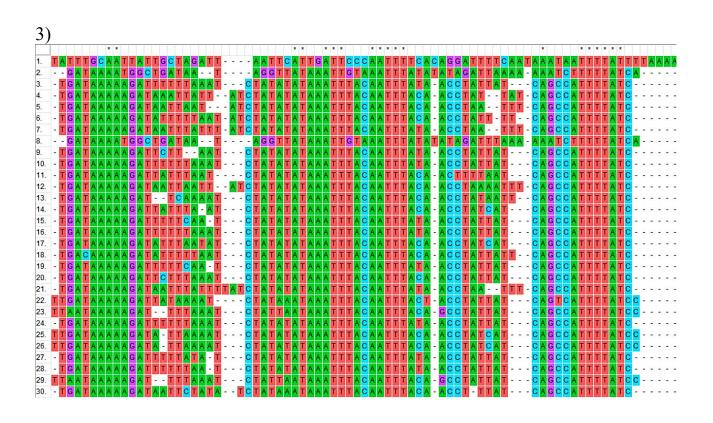
Продолжительность выполнения задания – 1 час 30 минут (90 минут).

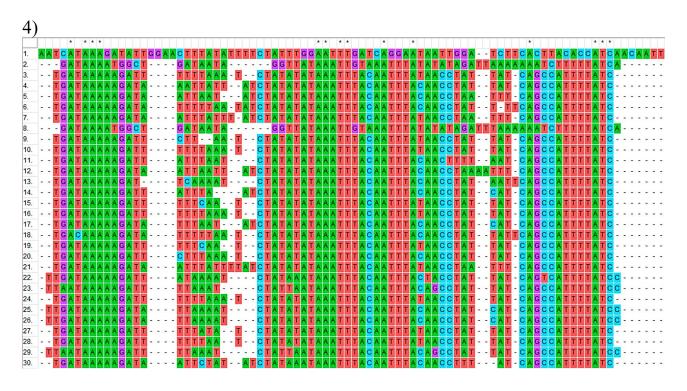
ЗАДАНИЕ 1

(15 баллов)

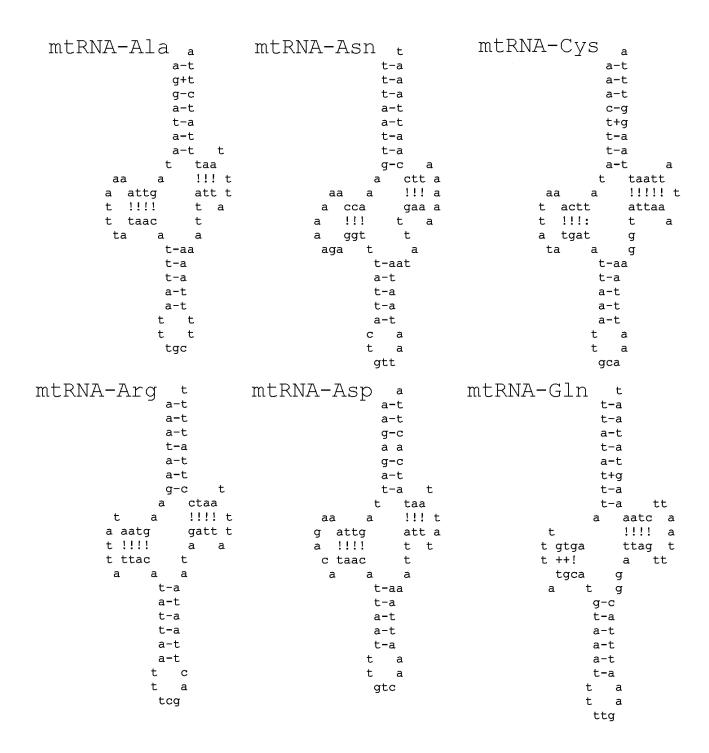

Перед Вами нуклеотидная последовательность из митохондриального генома животного, включающая ген тРНК и белок-кодирующий ген. Вам необходимо аннотировать данный участок (длина 699 п.н.).


См. представленный ниже митохондриальный генетический код.


Вторая буква							
		U	С	Α	G		
Первая буква	U	UUU Phe UUA Leu UUG	UCU UCC UCA UCG	UAU DAC Tyr UAA Stop UAG Stop	UGU Cys UGC Trp UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG	U C A G	Третья
	Α	AUU AUC IIe AUA Met AUG	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU AGC Stop	U C A G	буква
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAA GAG GAG	GGU GGC GGA GGG	U C A G	


Митохондриальный генетический код

1.1 тРНК ген можно обнаружить путём гомологичного выравнивания последовательностей из близкородственных видов. Ниже представлены варианты выравнивания. Исследуемая последовательность имеет порядковый номер 1.



Выравнивание, позволяющее обнаружить тРНК ген находится под номером____(*1 балл*).

1.2 Для идентификации аминокислоты, с которой данная тРНК будет взаимодействовать, необходимо смоделировать её вторичную структуру. Ниже представлено несколько образцов тРНК других аминокислот.

Смоделируйте вторичную структуру для Вашей тРНК. (4 балла)
1.3 тРНК какой аминокислоты закодирована в последовательности?
(1 балл
1.4 Какому кодону соответствует данная тРНК?
1.5 Отыщите белок-кодирующий ген в оставшейся последовательности
Структурный элемент, отсутствующий в этом гене –
в зрелую РНК произойдёт на этапе
(1 балл) при помощи фермент
(1 балл), узнающего следующун
сигнальную последовательность $(5'-3')$ (2 балла).

1.6 Заполните таблицу с аннотацией Вашей нуклеотидной последовательности (*3 балла*)

Ген	Цепь ¹	Старт/ Стоп- кодон ²	Антикодон ³	Локализация ³	Размер гена	Межгенные нуклеотиды ⁴
тРНК						
Белок- кодирующий						

Примечание:

ЗАДАНИЕ 2 (15 баллов)

2.1 На рисунке ниже представлен ядерный геном животного. Вам необходимо построить модель гена из предсказаний, указанных ниже (на том же рисунке) (5 баллов).

Цифрой 1 обозначены выравнивания обратно транслированных аминокислотных последовательностей близкородственных видов на нуклеотидную последовательность генома при помощи алгоритма TBLASTX.

Цифрой 2 обозначены выравнивания собранного транскрипта из этого же организма на последовательность генома.

Цифрой 3 обозначены предсказания локализации экзонов с использованием скрытых марковских моделей, полученных при помощи трех различных алгоритмов.

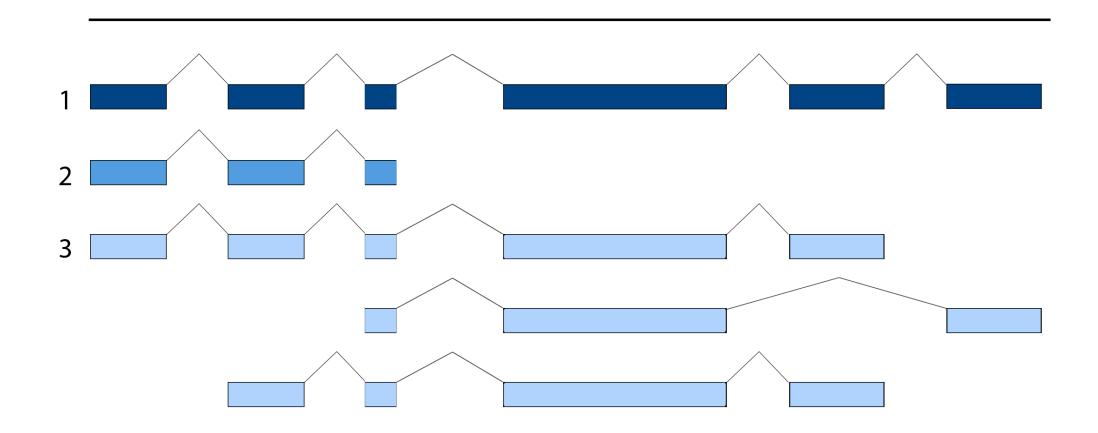
Значимость предсказания моделей гена с использованием выравниваний аминокислотных последовательностей близкородственных видов -3.

Значимость предсказания моделей гена с использованием транскриптов из этого же генома -6.

Значимость предсказания моделей гена с использованием скрытых марковских моделей – 1.

Допустимая минимальная значимость консенсусного транскрипта -6.

^{1 —} укажите, на + или — цепи закодирован ген при условии, что изначально Вы получили последовательность с + цепи.


 $^{^2}$ — « \rightarrow » если отсутствует.

 $^{^{3}}$ – с какого по какой нуклеотид (диапазон).

^{4 —} знак «—» перед количеством нуклеотидов обозначает перекрывающиеся нуклеотиды, отсутствие знака обозначает количество неперекрывающихся нуклеотидов.

Постройте модель гена исходя из предсказаний. Модель гена изобразите на горизонтальной осевой черной линии (она соответствует ядерному геному животного), находящейся в самом верху схемы (над цветными предсказаниями). Текстовые пояснения к схеме смотрите выше.

Место для ответа:

2.2 Перед вами находится нуклеотидная последовательность гена на матричной цепи.

Исходная последовательность:

Ниже представлены варианты получения альтернативных транскриптов. **Произойдут ли изменения в продукте** после внесения в 170 нуклеотид мутации G = A? Если да, то какие и по какой причине?

Для выполнения задания смотрите представленный ниже стандартный генетический код:

ВТОРАЯ БУКВА							
		U	C	A	G		
	U	UUU Фенил- UUC аланин F UUA Лейцин L	UCU UCC UCA UCG S	UAU UAC Тирозин Y UAA Стоп-кодон UAG Стоп-кодон	UGU Цистеин С UGC Стоп-кодон UGC Триптофан	UCAG	
BYKBA	С	СUU CUC CUA CUG	ССС ССА СССВ Р	CAU — Гистидин — САС — Глутамин Q	СGU CGC CGA CGG	UCAG	третья
ПЕРВАЯ	A	AUU I AUC Изолейцин AUA Метионин cтарт-кодон	АСИ АСА АСА АСВ Треонин	AAU — Аспарагин N AAA — Лизин K	AGC CEPUH S AGA AGG APTUHUH R	UCAG	6 Y K B A
	G	GUU GUC GUA GUG	GCU GCC GCA GCG Aланин	GAU Аспарагиновая кислота САА САВ Кислота Кислота Кислота САВ Кислота САВ Кислота САВ САВ Кислота САВ	GGU GGC GGA GGG	UCAG	

Стандартный генетический код

Вариант получения транскрипта 1:

GCGCTAAGCCATGCTACATATTTAAAACGCTATATACCCCGATATATTTGCTAACGCCTAAGCCATCCGATCCAGCATCGGATTTTACT

CAACGCCAGCTATTCGATCGCTTTT

Вариант получения транскрипта 2:

GCGCTAAGCCATGCTACATATTTAAAACGCTATATACCCCGATATATTTGCTAACGCCTAAGCCATCCGATCCAGCATCGGATTTTACT

CAACGCCAGCTATTCGATCGCTTTT

Четвёртый этап республиканской олимпиады по учебному предмету «Биология» 2021/2022 учебный год

место для ответа:	
	
	<u>(10 баллов).</u>